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Purpose: The main goal of this study was to test the following hypotheses:

1. Monson’s pyramid is the 3D unifying geometric figure for Bonwill’s, Spee’s, Monson’s, and Hall’s

theories of occlusion.
2. Monson’s sphere is made up of four regular tetrahedrons (Monson’s pyramids).
3. The radius of Monson’s sphere is greater than the radius of circumsphere of Monson’s pyramid.

Materials and Methods: Bonwill’s triangle was used as the basis of geometrical model for
constructing other 3D objects in this study; and it was assumed that the length of each side of
Bonwill’s triangle was 10cm. A regular tetrahedron was constructed from Bonwill’s triangle. Then,
linear and angular parameters were calculated for the constructed tetrahedron and its associated
geometric figures. The calculated values were then subjected to statistical analysis using SPSS ver-

sion 20; and comparisons of parameters were made using student’s t-test.

Results: It was found that the theoretical geometrical figures that were proposed and demon-
strated by Bon will, Spee, Monson and Hall were interconnected geometrically by means of a 3D

geometric figure known as tetrahedron.

Conclusion: Monson’s pyramid was established as the unifying 3D geometric figure for the
analyzed geometric models of occlusion. Monson’s sphere is made up of four Monson’s pyramids
while the radius of Monson’s sphere is also found to be greater than the radius of circumsphere of
Monson’s pyramid. The clinical significance of this study is that some important linear and angu-
lar parameters, that are required in the fabrication of dentures, can be calculated from a regular

tetrahedron and its associated geometric figures based on individual patient’s bicondylar distance.

KeyWOI'dS: Connectivity, Mathematics, Occlusion, Theory.

Introduction

any mathematical models have been devel-
oped to describe dental occlusion as well as
to explain different occlusal concepts; and
the importance of these mathematical models cannot be
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overlooked because of their contributions in ensuring pre-
cision in the processes and principles of bioengineering
design and construction of dental appliances, instruments
and equipment [1-4]. Mathematical models are aimed at
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structural stability, integrity, functional effectiveness,
efficiency and reliability. Structural designs are based
on three fundamental geometric figures to wit: circle,
triangle and square; and all other geometric figures are
derivatives of these primary geometric figures.

The initial work on mathematical model for occlu-
sal concepts was pioneered by Bonwill [1]. In 1846,
Bonwill [1] proposed that mandibular movements
were guided by the condylar and incisal guidance; and
the teeth moved in relation to each other as guided by
this guidance. He advanced that the joining of the two
condylar processes of the mandible and the midpoint
of the medial contact of lower central incisors with
lines, an equilateral triangle was formed; and each side
of the triangle was approximately 10cm. This is known
as Bonwill’s equilateral triangle and it forms the basis
of construction of some average articulators.

In 1890, Von Spee [2,3] proposed that during pro-
trusive movement of the mandible, the condyles and
the teeth describe a common curve which was a part of
a circle with the centre at the glabella; and the radius
of the circle was about 10cm. This curve is referred to
as sagittal occlusal curve and lies at the lower segment
of the circle.

In 1918, Monson [4-6] linked up Spee’s curves with
perpendicular bisectors of their whole chords and
demonstrated that the bisecting lines intersected at the
glabella. He also demonstrated that the resultant force
from the lower teeth also intersected at the glabella.
This point of intersection is the centre of a sphere hav-
ing a radius of about 10cm; and its lower segment rep-
resents the occlusal surface. He also demonstrated the
presence of lateral occlusal curves owing to the differ-
ent levels of the lingual and buccal cusps of posterior
teeth. Hall [7,8] proposed that the lower teeth move
over the surfaces of the upper teeth as over the surface
of a cone, generating an angle of 45-degrees with the
central axis of the cone tipped at 45 degrees to the oc-
clusal plane. The base of the cone lies posterior while
its apex is the midpoint of the lower central incisors.
The studies of Bonwill [1], Spee [2,3], Monson [4,5] and
Hall [7,8] were based on the premise that the left and
right sides of the mandible were symmetrical. How-
ever, studies by Bosse [9], Choquet [10,11], Welcher
[12], Frahm [13] Amoedo [14] and Wilson [15] have
shown high degree of asymmetry of the left and right
sides of the mandible. Variations in the bicondylar dis-
tances among people within a racial grouping as well
as between racial groupings of different geographical
locations have also been observed and reported [9-15].

The concepts of occlusion and articulation have
been subjected to a long-standing debate and exposi-
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tion by dentists; and there are still few grey areas on
which no common ground has been reached. This
topic will continue to attract new studies because it is
central to diagnosis, treatment planning and treatment
evaluation in the different fields of dentistry [16-18].

The following hypotheses were tested in this study:

1. Monson’s pyramid, a regular tetrahedron derived
from Bonwill’s triangle, is the 3D unifying geometric
figure for Bonwill’s, Monson’s, Spee’s and Hall’s theories
of occlusion.

2. Monson’s sphere is made up of four Monson’s pyra-
mid, a regular tetrahedron derived from Bonwill’s tri-
angle.

3. The radius of Monson’s sphere is greater than the
radius of circumsphere of Monson’s pyramid.

Materials and Methods

This study was a mathematic-geometric analysis of
the relationships among Bonwill’s triangle, Spee’s cir-
cle/curves, Monson’s sphere and Hall’s cone. Bonwill’s
triangle was used as the basis of geometric construc-
tion of the other geometric models as well as genera-
tion of linear and angular numerical data for this study.
It was assumed that the length of each side of Bonwill
triangle was 10cm. The following parameters to wit: ra-
dius, area, volume, height, length of side, length of edge
and angles were determined, as the case might be, in
respect of Bonwill’s triangle, Monson’s pyramid, Spee’s
circle, Monson’s sphere and Hall’s cone using various
mathematical formulae as shown in tables 1a and 1b.
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List of tables and figures

P=3a Perimeter
S§=3a+2 Semi-perimeter
A= a2vV3+4 Area
H= aV3+2 Altitude
H= aV3+2 Median
H=aV3+2 Angle Bisector
R=aV3+3 Circumscribed Circle Radius
r=aV3+6 Inscribed Circle Radius

Table 1a: Showing equilateral triangle equations *'.

Surface area A=d’V3
Volume V=1/12 a’V3
Height h=V6(a/3)

Angle between an edge and a face

Arctan (V2)
(approx. 55°)

Angle between two faces

arccoc(1/3)= arctan(2 V2)
(approx. 71°)

Radius of circumsphere

R= V6(a/4)

Radius of insphere that is tangent to faces

r= V6(a/12)

Table 1b: : Showing some formulas for regular tetrahedron *, For a regular tetrahedron of edge length ‘a’.

Mathematic-geometric formation of
Bonwill’s triangle, Spee’s circle, Monson’s
sphere and Hall’s cone

The interconnectedness of Bonwill’s triangle, Spee’s
circle, Monson’s sphere and Hall's cone were carried
out as follows: Concerning Bonwill’s triangle, the right
and left sides of the triangle were regarded as the right
and left extended chords of Spee’s curves. The perpen-
dicular bisectors from all the sides of Bonwill’s equi-
lateral triangle also intersected at the point similar
to the common centre of rotation of Spee’s circle and
Monson’s sphere respectively. Therefore, perpendicu-
lar lines, drawn upward, from the three vertices of the
Bonwill’s triangle would result in the formation of a
regular tetrahedron since all the three sides are of the
same length (Figure 1).

The tetrahedron could also be regarded as a cone
or a pyramid with a triangular base in line with Hall’s
cone (Figure 1).

Concerning Spee’s curves/circle, the right and left
sides of Bonwill’s triangle were regarded as the extend-
ed right and left chords of Spee’s curves. The perpendic-
ular bisectors from these whole chords of Spe€’s curves
on both sides of the mandible intersect at one point.
If a whole chord and its perpendicular bisector of one

side of Spee’s curves occupy a two-dimensional space,
then, the perpendicular bisectors of the two whole
chords of Spee’s curves on both sides of the mandible
intersect at one point, and this point displays a three
dimensional space location. This is the rotation centre
of a sphere. Therefore, a similar geometric construction
can be applied to produce a sphere having a common
centre of rotation with Monson’s sphere, as previously
described based on Spee’s curves (Figure 1). Linear and
angular parameters of Bonwill’s triangle, Spee’s circle/
curves, Monson’s sphere,

Hall's cone and the derived regular tetrahedron
were calculated using mathematical and geometrical
formulae as shown in tables l1a and 1b.

The data obtained were analyzed using SPSS ver-
sion 20. Comparisons of linear parameters concerning
the geometric figures were carried out using student’s
t-test. Level of significance was set at p<0.05 and confi-
dence interval was set at 95%.
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Results

The regular tetrahedron derived from Bonwill’s tri-
angle constitutes the unifying geometric figure for Bon-
will’s triangle, Spee’s curves/circle, Monson’s sphere/
curves and Hall’s cone as shown in figure 1.

The radii of incircle and circumcircle of Bonwill’s
triangle are 2.88675135cm and 5.7735027cm respec-
tively; and they have a common centre (Table 2). The
radii of insphere and circumsphere of Monson’s pyra-
mid or tetrahedron are 2.041 cm and 6.123cm respec-
tively; and they share a common centre (Table 2). The
radius of the circumcircle of Bonwill’s triangle is twice
the radius of its incircle (Figure 3). The radius of in-
sphere of a regular tetrahedron is % of the height of
the tetrahedron while the radius of the circumsphere of
the tetrahedron is thrice the radius of insphere of the
tetrahedron (Tables 2 and 3). The volume of Monson’s
sphere is 4190.47619 cm3 (Table 3) while the volume of
the circumsphere of the regular tetrahedron (Monson’s
pyramid) is 961.0958cm3 (Table 3) with a ratio of 4:1
approximately.

The areas of Bonwill’s triangle, Spee’s circle, Mon-
son’s sphere, the regular tetrahedron (Monson’s
pyramid) and Hall's cone are 43.3cm2, 173.2cm2,
1257.14286cm2, 314.285714cm?2 and 173.2cm?2 respec-
tively (Table 3).

The length of each side of Bonwill’s triangle and
the length of each edge of the regular tetrahedron
(Monson’s pyramid) and Hall's cone are the same
(10cm). The heights of Bonwill’s triangle, Monson’s
pyramid, Monson’s sphere, Spee’s circle and Hall’s cone
are 8.66025404cm, 8.16496581cm, 20cm, 20cm and
8.16496581cm respectively (Table 3). Table 4 shows
some important values of the regular tetrahedron,
Bonwill’s triangle, Balkwill's angle and Hall's cone.
The length of a side of an equilateral triangle that will
perfectly fit into Spee’s circle is 17.3205081cm and this
is greater than the length of one side of Bonwill’s trian-
gle i.e. 17.3205081cm-10.0cm =7.3205081cm (Table 5).
The length of an edge of a regular tetrahedron that will
perfectly fit into Monson’s sphere is 16.3299316cm and
this is greater than the length of one side of Bonwill’s
triangle i.e. 16.3299316cm-10.0cm=6.3299316cm (Ta-
ble 5). No significant difference between the length of
an edge of tetrahedron that will perfectly fit into Mon-
son’s sphere and the length of one side of the equi-
lateral triangle that will perfectly fit into Spee’s circle
provided the length of one side of Bonwill’s triangle is
10cm (P=0.154) (Table 5).

No significant difference between the radius of the
circumsphere of Monson’s pyramid and the radius of
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circumcircle of Bonwill’s triangle provided the length
of one side of Bonwill’s triangle is 10cm (P=0.432) (Ta-
ble 5).
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Parameters Incircle and circumcircle of Bonwill’s Triangle Insphere and circumsphere of Monson’s Pyramid
Incircle Circumcircle Insphere Circumsphere
Radius (¢cm) 2.886 5.772 2.041 6.123
Area (cm2) 26.176 104.852 52.368 471.317
Volume (cm3) - - 35.368 961.958
Height (cm) 5.772 11.544 4.082 12.246

Table 2. Comparison of parameters of incircle and circumcircle of Bonwill’s triangle as well as insphere and

circumsphere of Monson’s pyramid.

Parameters Bonwill’s triangle Monson’s pyramid ~ Monson Sphere rrr Spee’s circle/curve r Hall’s cone
r=6.123 r=10cm r=10cm
Height (cm) 8.66025404 8.16496581 20.0 20.0 8.16496581
Area (cm2) 43.3 173.2 1257.14286 314.285714 173.2
Volume (cm3)) - 13.576667 4190.47619 - 13.5766667
Length of edge/side 10.0 10.0 - - 10.0
(cm)
r = radius.

Table 3. Comparison of parameters of Bonwill’s triangle, Monson’s pyramid, Monson’s sphere, Spee’s circle and Hall’s

cone.

Monson’s Pyramid, Bonwill’s Triangle, Balkwill’s Triangle &
Hall’s Cone

Parameters

Angle between Bonwill’s triangle and the occlusal plane Balkwill angle =260(mean)

The three internal angles formed at the vertices of Bonwill’s trian- facial triangle =600

gle

Angle between a surface of the tetrahedron and one of its edges

inclination angle =70.50

Angle between the central axis of the cone and a face 19.470

260 +19.470 = 45.470
Balkwill’s angle (260)+ face-axis angle (19.470) = 45.470

Halls inclination angle i.e. the tilt of the cone in relation to occlusal

plane =450

Table 4. Some important angular values of Monson’s pyramid (Tetrahedron derived from Bonwill’s Triangle), Bon-

will’s triangle, Balkwill’s angle and Hall’s cone.

Parameters Difference P-value

The difference between length of a side of equilateral triangle that will perfectly fit into 7.320508 0.990 0.154

.Spee’s circle and length of one side of Bonwill’s equilateral triangle
The difference between length of an edge of regular tetrahedron that will perfectly fit into 6.3299316
Monson’s sphere and length of one side of Bonwill’s triangle
The difference between radius of circumcircle of Bonwill’s triangle and radius of Spee’s 4.22643 0.339 0.432
circle
The difference between radius of circumsphere of Monson’s tetrahedron and radius of 3.887

Monson’s sphere

Table 5. Comparison of radius and length parameters of Bonwill’s triangle, Spe€’s circle and Monson’s sphere/tetra-

hedron.

J Craniomaxillofac Res 2018; 5(1): 8-18
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Discussion

The discussion of this study would be based on the fol-

lowing five major sections:

I. Interconnectedness of Bonwill's triangle,
Spee€’s circle/curve, Monson’s sphere/curves, and
Hall’s cone.

ii. The relationship between the radius of a circle
and the length of its inscribed equilateral tringle.

iii. The relationship between the radius of a
sphere and the length of the edge of its inscribed
regular tetrahedron (triangular pyramid).

IV. Circumscribed regular tetrahedron (derived
from Bonwill’s triangle) and its roles in occlusal
concept.

V. Determination of Hall’s cone inclination.

Interconnectedness of Bonwill’s triangle, Monson’s
sphere/curves, Spee’s circle/curves and Hall’s cone

This study shows a strong connection among the
analyzed theoretical geometric models of occlusion.
The strong inter-connectedness is rooted in the trajec-
tory of the mandible, as guided by the condylar pro-
cesses and the incisal guidance, during mandibular
excursions [1-4]. Bonwill’s equilateral triangle laid the
foundation upon which Spee€’s circle/curves, Monson’s
sphere/curves/tetrahedron and Hall’s cone were devel-
oped as shown in figure 1. The interconnectedness of
the aforementioned geometrical models of occlusion
is further demonstrated by the common centre of ro-
tation of Spee’s circle/curves, Monson’s sphere/curves/
pyramid and Hall’s cone which were derived from Bon-
will’s equilateral triangle (Figure 1) ) [19-23].

Hall’'s cone does share the same center of rotation
with Spee’s circle and Monson’s sphere but it is differ-
ent in terms of the orientation of its long axis to the
occlusal plane. Hall’'s cone is the same regular tetrahe-
dron derived from Bonwill’s triangle but its apex lies at
the medial contact of the lower central incisors while
its base lies posteriorly (Figure 1). The regular tetrahe-
dron (triangular pyramid), formed from Bonwill trian-
gle, through the work of Monson, could be regarded
as the geometric link that could adequately unify and
describe these geometrical models. It should be noted
that a regular tetrahedron is formed from four equilat-
eral triangles (Figure 1); and every equilateral triangle
has an incircle, a circumcircle and an excircle (figure
2) [19-23]. In a similar state, every tetrahedron is asso-
ciated with an insphere, a circumsphere, a midsphere
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and an exosphere (Figure 3) [19-23]. Thus, an equilat-
eral triangle and a tetrahedron share similar geomet-
ric characteristics owing to the fact that the regular
tetrahedron is derived from four equilateral triangles.
Consequently, theories and concepts of occlusion, as
propounded by Bonwill, Spee, Monson and Hall, are
closely interrelated based on their genesis. In this con-
text, it could be argued that all theories and concepts of
occlusion are partly rooted in past research findings by
notable authors in the field of human occlusion [1-8].

The relationship between the radius of a circle and
the length of its inscribed equilateral tringle.

The length of the equilateral triangle that would
perfectly fit into Spee’s circle with a radius of 10cm
was 17.3205081cm. This length was significantly longer
than the length of a side of Bonwill’s triangle which is
10cm. In this study, it was also found that the radius
of the circumcircle of Bonwill triangle was 5.77357cm;
and this circumradius was significantly shorter than
the radius of Spee’s circle which is 10.0cm.

This suggests that the length of one side of a cir-
cumscribed equilateral triangle is directly propor-
tional to the radius of its circumcircle [19]; then, the
questions arise: under what situation will Spee’s circle,
with a radius of 10cm, accommodate Bonwill triangle;
and how many such triangles can be accommodated
within the circle? The answers to these questions lie
in the fundamental facts of geometric theorems that if
a chord of 10cm subtends an angle of 60° at the centre
of a circle with a radius of 10cm, an equilateral triangle
which is equivalent to Bonwill’s triangle is formed. The
total angle at the centre of a circle (angle at a point)
is 360 degrees. Therefore, six equilateral triangles will
subtend a total of 360 degrees at the centre of the cir-
cle i.e.360° + 60° = 6. Consequently, Spee’s circle with a
radius of 10cm will be made up of six equilateral tri-
angles; and each triangle will have one of its sides as a
chord on a portion of the circumference of the circle
and the other two sides as the radii that subtend an
angle of 60 degrees at the centre of the circle. Conse-
quently, the Spee’s circle thus gives an appearance of
a wheel having six sectors; and the arc that is formed
by one of the sides of the lowest equilateral triangle
represents the sagittal occlusal curve of Spee (Figure 4).

The Spee’s circle can also be likened to a circum-
scribed six-sided regular polygon (Figure 4) in which
each side subtends an angle of 60 degrees at the centre
of the circle; and the radius of the circumcircle and the
length of each side of the polygon are the same (10cm).
The circumcircle of the individual equilateral triangle



A mathematical analysis of Monson’s spherical theory and its clinical implications /14

within the Spee’s circle has a radius of 5.773570cm.
Therefore, the length of side of the equilateral triangle
that is circumscribed by a circle with a radius of 10cm
is significantly longer than the length of a side of Bon-
will’s triangle.

The relationship between the radius of a sphere and
its inscribed tetrahedron

Another important finding of this study was that
the length of edge of the tetrahedron that would per-
fectly fit into Monson’s sphere with a radius of 10cm
was 16.3299316cm. This length is significantly longer
than the length of a side of Bonwill’s triangle which
is 10cm. It was also found that the radius of the cir-
cumsphere of Monson’s pyramid was 6.123cm; and this
circumradius was significantly shorter than the radius
of Monson’s sphere which is 10cm.

Therefore, this suggests that the length of edge of
any circumscribed regular tetrahedron is determined
by the radius of its circumsphere. Then, one may ask,
under what situation can Monson’s sphere accommo-
date a tetrahedron whose length of edge will be equiva-
lent to the length of a side of Bonwill’s triangle; and how
many such tetrahedron can be accommodated within
the Monson’s sphere? Geometrically, the tetrahedron
whose length of edge is equivalent to Bonwill triangle
is considered as a sector of Monson’s sphere and has its
base located at the surface of the sphere while its apex
is located at the centre of the sphere (Figure 1).

If the volume of the circumsphere of Monson’s tet-
rahedron is 961.9581cm’ and the volume of Monson’s
sphere is 4190.47619cm (Table 3). Then, the number of
circumscribed Monson’s pyramids that will fill Mon-
son’s sphere is equal to the volume of Monson’s sphere
divided by the volume of the circumscribed Monson’s
pyramid (4190.47619cm’ + 961.9581cm” = 4.0 approx-
imately. Therefore, the length of edge of the tetrahe-
dron that is circumscribed by Monson sphere with a
radius of 10cm is significantly longer than the length of
a side of Bonwill’s triangle.

The circumscribed Monson’s pyramid (a regular tet-
rahedron) and its roles in occlusion concepts

The roles of circumscribed Monson’s pyramid in
occlusal concepts and occlusion are clearly shown in
this study. The circumscribed Bonwill’s triangle por-
tion of the Monson’s pyramid represents a cross section
of Monson’s sphere and its radius is 5.773570cm which
is significantly smaller than the radius of Monson’s
sphere (Figure 1 & Table 3). Therefore, it does suggest

that the plane formed by Bonwill’s triangle does not
lie at the centre of the sphere (Figure 1). However, the
areas of the segments formed by left and right sides
of Bonwill’s triangle with its circumcircle represent the
surface areas occupied by the combined medio-lateral
surfaces of the upper and lower teeth (Figure 2). These
areas constitute the boundaries of the medio-lateral
movements of the mandible. The distance between the
right or left side of Bonwill’s triangle and the arc of
the segment formed by either the right or left side de-
creased posteriorly and anteriorly from the mid-point
of the curvature (arc) owing to the decrease in the me-
dio-lateral width of the teeth either posteriorly or an-
teriorly.

The lateral and sagittal curves intersect at the sur-
face of the sphere to form Monson’s curves (Figure 1).
Therefore, it could be appropriately suggested that lat-
eral and sagittal curves are parts of Monson’s sphere
but they exhibit different orientations with respect to
the three major planes of occlusion and articulation
(Figure 1). Spee’s curves [2,3] run in anterior-posterior
plane (sagittal plane), therefore they are called sagittal
occlusal curves while Wilson’s curves [15,18] run in
transverse or frontal plane, hence they are called lateral
curves of occlusion (Figure 1).

The roles of circumscribed Monson’s pyramid in
providing some insight into occlusal concepts and oc-
clusion can be appreciated and understood in the fol-
lowing ways: The Monson’s pyramid is specific with
respect to individual’s face size. The equilateral triangle
which forms the base of the tetrahedron represents the
Bonwill’s equilateral triangle. The circumcircle of Bon-
will’s triangle represents a cut face of Monson’s sphere.
The circumcircle of the posterior triangle of the tetra-
hedron represents Monson’s lateral or transverse occlu-
sal curves.

The arcs of the lower segments of the circumcircles
of the left and right surface equilateral triangles of the
tetrahedron represent the sagittal occlusal curves of
Spee; and the distance between chords and arcs of the
segments represent the clinical heights of the crowns
of maxillary posterior teeth and the combined depth
of mandibular and maxillary sagittal occlusal curves of
Spee. The three sides of Bonwill’s equilateral triangle
represent different chords on the circumsphere of the
regular tetrahedron. The vertices of the tetrahedron
correspond to important anthropometric points or
landmarks in the study of dental occlusion and artic-
ulation i.e. the condylar processes, incisal point and
glabella (Figure 1). If the posterior triangle of the tet-
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rahedron is regarded as its base and the vertex (at the
midpoint of the lower central incisors) represents its
apex, then, a cone which adequately describes the con-
ical theory of occlusion by Hall is formed (Figure 1).

The length of the perpendicular bisector of each
of the four equilateral triangles, forming the faces of
a regular tetrahedron, can be calculated using this for-
mula H= aV3+2 (12) where “H” is the length of the
perpendicular bisector and “a” is the length of one side
of the regular tetrahedron. The height of the regular
tetrahedron can also be calculated using this formula
h=V6x (a/3 (26) where “h” is the height and “a” is the
length of the edge. The triangular faces, vertices and
edges of the tetrahedron are similar to the morpho-
logical expressions of the basic elements of the maxil-
lo-mandibulo-dental system. Consequently, Monson’s
pyramid can be used to explain common factors in the
various elements of masticatory apparatus, articulation
and occlusion theories [23-26].

o —

\ ]2

{ .

[/

Bonwill's

triangle \
p

../

< —  Mandible

Figure 1. Showing formation of Monson’s pyramid and
sphere, Bonwill’s triangle and compensating curves.

o A represents center of rotation of Monson’s sphere-a
3D geometrical object.

« A, B, C and D represent the four vertices of Monson’s
pyramid which is derived from Bonwill’s equilateral
triangle.

o The four triangles that make up Monson’s pyramid
are BCD, ABC, ACD and ABD.

o Bonwill’s equilateral triangle forms the base of Mon-
son’s pyramid.

« Monson’s pyramid is a conical section of Monson’s
sphere with a circular cap.

o Sagittal curves represent Spee’s sagittal occlusal
curves.

o Lateral curve represents Wilson’s lateral occlusal
curve.

« The intersections of Spee and Wilson’s curves form
Monson’s curves .
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« Monson’s pyramid could be considered as Hall’s cone
if C represents the apex and ABD represents the base
of the pyramid.

Figure 2. Bonwill’s equilateral Triangle showing incircle
and circumcircle.
o a = The length of each side of the triangle.

« The radius of the circumcircle is given by the formula
V3xa=+3.

« The radius of the circumcircle is given by the formula
V3xa=+6.

» A, B and C are the angles of the triangle = 60° each.

Figure 3. Showing a regular tetrahedron and its cir-
cumsphere.

« A, B,CandD represent the vertices of the tetrahedron.
o AH represents the height of the tetrahedron.

o O represents the center of the tetrahedron.

« ABC, ABD, ACD and BCD are the triangles that
form the four surfaces of the tetrahedron.

o AC, AB, CB, CD, BD and AD are the edges of the
tetrahedron.

« CB, CD and BD are cords formed by the base of the
tetrahedron on a segment of the circumsphere of the
tetrahedron.
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A B
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Figure 4. Showing six Bonwill’s equilateral triangles
within a common circumcircle.

o Each triangle subtends an angle of 60 degrees at the
center.

o The length of each side of a triangle is 10cm.

« AB, BC, CD, DE, EF and FA are chords which divide
the circumcircle into six equal arcs.

Determination of Hall’s cone inclination

The inclination angle of Hall’s cone is the angle be-
tween the long axis of the cone and the occlusal plane
[7,8]. It is the sum of the angle between the long axis
of the cone and its inferior surface and Balkwill angle.
Balkwill angle is the angle between Bonwill equilateral
triangle and the occlusal plane [28]. According to Dr.
Balkwill, this angle is 26 degrees on the average, with a
range of 22-30 degrees, in Caucasians [28]. Therefore,
in determining the inclination angle of Hall’s cone, the
angle between the long axis and the inferior surface of
the cone as well as Balkwill angle must be ascertained.

Consequently, if Balkwill angle (26 degrees) is add-
ed to the angle between the long axis of the cone and
its inferior surface (19.47 degrees), a total of 45.47 de-
grees is obtained as the inclination angle of Hall’s cone.
This calculated angular value closely approximates
Hall’s inclination angle which is 45 degrees (Table 4).
It should be noted that the angle between the long axis
of the cone and its inferior surface remains constant
[27]. However, Balkwill’s angle varies from individual
to individual and from race to race. Therefore, Hall’s
cone inclination angle will vary because of variations in
Balkwill’s angle. Studies of Bergstrom [29], Hart [30]
and Kohler [31] have shown average values of Balkwill
angle of 18 degrees, 20 degrees and 21 degrees respec-
tively. To this end, it is important to carry out studies
in different populations and in different geographical

locations to determine average norms of Balkwill angle
for different populations around the world.

A major limitation of this study was that Bonwill’s
equilateral triangle, which formed the basis of this anal-
ysis, could not be used universally because it was based
on Caucasians; and studies have shown that there are
variations in bicondylar distances from one person to
another person and within a racial grouping as well as
from one race to another race. However, this limitation
can be eliminated by determining the bicondylar dis-
tance of each patient for the construction of a regular
tetrahedron (Monson’s pyramid), which is the unifying
3D geometric figure for all the aforementioned geo-
metrical models of occlusion.
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Conclusion
It is concluded as follows:

1. The hypothesis that Monson’s pyramid, a regular tet-
rahedron derived from Bonwill’s triangle, is the unify-
ing 3D geometric figure for Bonwill’s, Monson’s, Spee’s
and Hall’s theories of occlusion was established.

2. The hypothesis that Monson’s pyramid constitutes
one of the four regular tetrahedrons that make-up
Monson’s sphere was established.

3. The hypothesis that the radius of Monson’s sphere
is greater than the radius of circumsphere of Monson’s
pyramid was also established.

4. There is a strong mathematic-geometric intercon-
nectedness among Bonwill’s triangle, Spee’s circle/
curves, Monsons sphere/curves/pyramid and Hall’s

cone.

5. Bonwill’s triangle, Spee’s circle/curves, Monson’s
sphere/curves/pyramid and Hall’s cone are specific for
each patient based on the individual patient’s bi-con-
dylar distance.

6. The clinical significance of this study is that some im-
portant linear and angular parameters such as curved
and straight inter-canine distances, depth of sagittal
and lateral occlusal curves, anterior facial height and
Balkwill angle, that are required in the fabrication of
dentures, can be calculated from Monson’s pyramid
and its associated geometric figures.
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